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NEED FOR A Multi Function Distributed System (MFDS)  MODEL

Popular software reliability models treat software as a single entity and model the failure process in accordance with this
perspective. However in a MFDS, with multiple clients and servers, this approach is not applicable. Consequently a software
reliability model was developed that takes into account the fact that not all software defects and failures result in system failures
in a client-server system.  In this model there are critical clients and servers: clients and servers with critical functions (e.g.,
network communication) that must be kept operational for the system to survive. There are also non-critical clients and servers
with non-critical functions (e.g., email). These clients and servers also act as backups for critical clients and servers, respectively.
The system does not fail unless all non-critical clients fail and one or more critical clients fail, or all non-critical servers fail and
one or more critical servers fail.

The Marine Corps Tactical System Support Activity (MCTSSA) required the development of such a model because the
MFDS is the type of system that is developed by this agency, where valid predictions of software reliability are important for
evaluating the reliability of systems that will be deployed in the field.

CLIENT-SERVER SOFTWARE RELIABILITY PREDICTION

This section provides an introduction to client-server software reliability prediction and provides definitions of several
important terms. Too often the assumption is made, when doing software reliability modeling and prediction,  that the software
involves a single node. The reality in today's increasing use of multi node client-server systems is that there are multiple entities
of software that execute on multiple nodes that must be modeled in a system context, if realistic reliability predictions and
assessments are to be made. For example if there are Nc clients and Ns servers in a client-server system, it is not necessarily the
case that a software failure in any of the Nc clients or  Ns servers , which causes the node to fail, will cause the system to fail. Thus,
if such a system were to be modeled as a single entity, the predicted reliability  would  be much lower than the true reliability
because the prediction would not account for criticality and redundancy. The first factor accounts for the possibility that the
survivability of some clients and servers will be more critical to continued system operation than others, while the second factor
accounts for the possibility of using redundant nodes to allow for system recovery should a critical node fail. To address this
problem, we must identify which  nodes -- clients and servers -- are critical and which are not critical. We use the following
definitions:

Node: A hardware element on a network, generally a computer,  that has a network interface card installed [NOV95].

Client: A node that makes requests of servers in a network or that uses resources available through the servers [NOV95].

Server: A node that provides some type of network service [NOV95].

Client-Server Computing: Intelligence, defined either as processing capability or available information, is distributed across
multiple nodes. There can be various degrees of allocation of computing function between the client and server, from one extreme
of an application running on the client but with requests for data to the server to the other extreme of a server providing centralized
processing (e.g., mail server) and sharing information with the clients [NOV95]. The terms client-server computing and distributed
system are used synonymously.
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Critical function:  An application function that must operate for the duration of the mission, in accordance with its requirement,
in order for the system to achieve its mission goal (e.g., the requirement states that a military field unit must be able to send
messages to headquarters and receive messages from headquarters during the entire time that a military operation is being
planned). This type of function operates  in the network mode, which means that the application requires more than a single client
to perform its function; thus client to server or client to client communication is required.

Non-critical  function: An application function that does not have to operate for the duration of the mission in order for the
system to achieve its mission goal (e.g., it is not necessary to perform word processing during the entire time that a military
operation is being planned). Often this type of function operates in the standalone mode, which means that a single client performs
the application function; thus client to server or client to client communication is not required, except for the possible initial
downloading of a program from a file server or the printing of a job at a print server. 

Critical clients and servers: Nodes with critical functions, as defined above. These nodes must be kept operational for the system
to survive, either by incurring no failures or by reconfiguring non-critical nodes to operate as critical nodes.

Non-critical clients and servers: Nodes with non-critical functions, as defined above. These nodes also act as backups for the
critical nodes, should the critical nodes fail.

Software Defect: Any undesirable deviation in the operation of the software from its intended operation, as stated in the software
requirements.

Software Failure: A defect in the software that causes a node (either a client or a server) in a client-server system to be unable
to perform its required function within specified performance requirements (i.e., a node failure).

System Failure: The state of a client-server system, which has experienced one or more node failures, wherein there are
insufficient numbers and types of nodes available for the system to perform its required functions within specified performance
requirements.

MODEL FORMULATION

By defining System Nodes, Node Failure Probabilities, and Failure States, the user will be able to compute the probability
of system failure given that a node failure has occurred. Start by defining the number and type of MFDS nodes as follows:

System Nodes

Ncc:     Number of Critical Client nodes.
Nnc(t): Number of Non-Critical Client nodes.
Ncs:     Number of Critical Server nodes.
Nns(t): Number of Non-Critical Server nodes.
The sum of these nodes should equal the total number of nodes:
 N=Ncc+Nnc(t)+Ncs+Nns(t).            (1)

 As long as the system survives, Ncc and Ncs are constants because a failure of a critical node will result in a non-critical node
replacing it, if there is a non-critical node available. A change in software configuration may be necessary on the former non-
critical node in order to run the failed critical node's software. If a critical node fails, the system fails, if there are no non-critical
nodes available on which to run the failed critical node's software.

 In contrast, Nnc(t) and Nns(t) are decreasing functions of operating time because these nodes replace failed critical nodes, and
are not themselves replaced, where Nnc(0) is the number of non-critical clients and  Nns(0) is the number of non-critical servers
at the start of system operation, respectively.  In addition, if a non-critical node fails, the function that had been operational on
the failed node can be continued on another node of this type and the system can continue to operate in a degraded state. When
either a non-critical node replaces a critical node or a non-critical node fails, Nnc(t) or Nns(t) is decreased by one, as appropriate.

Node Failure Probabilities

We must also account for the following node failure probabilities:
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pcc: probability of a software defect causing a critical client node to fail.
pnc: probability of a software defect causing a non-critical client node to fail.
pcs: probability of a software defect causing a critical server node to fail.
pns: probability of a software defect causing a non-critical server node to fail.

These probabilities are important to know individually in the analysis; they are also important in the computation of the
probability of system failure. 

 The general function for the probability of system failure, given a node failure, is  the following:

Psys/node fails=f(Ncc, pcc, Nnc, pnc, Ncs, pcs, Nns, pns)  (2)

Equation (2) means that the probability of a system failure, given a node failure, is dependent on the four node counts and
the corresponding four failure probabilities. The four probabilities are computed from data that is derived from a defect database
(defect descriptions, defect classifications, and administrative information) as follows:

pcc=Σifcc(I)/D, where fcc(I) is the critical client node failure count in interval I; (3)
pnc=Σifnc(I)/D, where fnc(I) is the non-critical client node failure count in interval I;  (4)
pcs=Σifcs(I)/D, where fcs(I) is the critical server node failure count in interval I; (5)
pns=Σifns(I)/D, where fns(I) is the non-critical server node failure count in interval I;  (6)
and the total defect count across all intervals is D=Σid(I),                                                   (7)

where I is the identification of an interval of operating time of the software and d(I) is the total defect count in interval I.

In a specific application, Boolean expressions (i.e. expressions containing AND, OR, and NOT, logic operations) are used
to search the defect database and extract the failure counts (e.g., fcc(I)) that are used to compute equations (3)-(6). These
expressions specify the conditions that qualify a defect as a node failure (e.g., defect that is a General Protection Fault that affects
network operations on a Windows-based system).

 Failure States

Next we need to know that at a given instant in test or operational time t, a MFDS may be in one of three failure states that
pertains to the survivability of the system, as follows, in decreasing order of capability:

Degraded - Type 1: A software defect in a  non-critical node causes the node to fail. As a result, the  system operates in a
degraded state, with one less non-critical node. No reconfiguration is necessary because the failed node is not replaced.

Degraded - Type 2: A software defect in a critical node causes the node to fail. As a result, the system operates in a degraded
state, but one that is more severe than Type 1, because there would be both a temporary loss of one critical node during
reconfiguration and a permanent loss of one non-critical node (i.e., one of the non-critical nodes takes over the function of the
failed critical node). Under certain conditions -- see Table 1 -- this type of node failure can cause a system failure.

The current version of the model assumes that node failures are not recoverable on the node where the failure occurred,
during the mission. The next version of the model will contain a repair function to account for the case where a node failure is
repaired and the node is put back into operation during the mission. 

System Failure: The system fails under the following conditions: 1) all non-critical clients fail and one or more critical clients
fail, or 2) all non-critical servers fail and one or more critical servers fail. The reason for this failure event formulation is that,
in the event of a failed critical node, a non-critical node can be substituted, possibly with  a different software configuration.
However, if all non-critical clients (servers) fail, and one or more critical clients (servers) fail, there would be no non-critical
clients (servers) left to take over for the failed critical clients (servers).
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The failure states are summarized in Table 1.

System Failure Probability

Having equations (3)-(6) for the node failure probabilities in hand, the model applies them to computing
 the probability of system failure -- equation (12). The intermediate equations leading up to equation (12) follow:

 The probability that one or more critical clients Ncc fail, given that the software fails, is:
Pcc=1-(1-pcc)

Ncc (8)

The probability that all non-critical clients Nnc(t) have failed by time t, given that the software fails, is:
Pnc(t)=(pnc)

Nnc(t) (9)

The probability that one or more critical servers Ncs fail, given that the software fails, is:
Pcs=1-(1-pcs)

Ncs (10)

The probability that all non-critical servers Nns(t) have failed by time t, given that the software fails, is:
Pns(t)=(pns)

Nns(t) (11)

Equations (8) and (9) assume that client failures are independent (i.e., one type of node failure does not cause another type
of node failure). This is the case because a failure in one client's software would not cause a failure in another client's software.
However it is possible that a failure in server software could cause a failure in client software, such as a client accessing a server
that has corrupted data.  Also, equations (10) and (11) assume that server failures are independent. This is the case because a
failure in one server's software would not cause a failure in another server's software. However it is possible that a failure in client
software could cause a failure in server software, such as a client with corrupted data accessing a server. No case of client failures
that were caused by server failures nor of the converse have been found in the LOGAIS database. Of course, this does not mean
that these events could not happen in general. To account for the possibility of these events, we would need to include the
conditional probability of a client failure, given a server failure, and the converse. This model formulation is beyond the scope
of this handbook and will be included in the next version of the model.

Combining (8), (9), (10), and (11), the probability of a system failure by time t, given that a node fails, is:

Psys/node fails=[Pcc][Pnc(t)]+[Pcs][Pns(t)]=[1-(1-pcc)
Ncc][(pnc)

Nnc(t)]+[1-(1-pcs)
Ncs][(pns)

Nns(t)] (12)
and the probability of a node failure due to software is:

psw=pcc+pnc+pcs+pns (13)

Time to Failure Prediction

In order to make Time to Failure predictions for each of the four types of node failures, the user first analyzes the defect data
to determine what type of software defects could cause each of the four types of node failures; then the user partitions the defect
data accordingly. More will be said about this process in the Application of Model section. Next the user applies equation (14)
of the Schneidewind Software Reliability Model [AIA93, KEL95, LYU 96, SCH92, SCH93] to make each of the four predictions,
using the SMERFS software reliability tool [FAR93].  In equation (14), Tf(t) is the predicted time (intervals) until the next Ft

failures (one or more) occur, α and β are failure rate parameters, s is the first interval where the observed failure data is used,

 t is the current interval, and Xs,t  is the cumulative number of failures observed in the range s,t.
Time to Failure predictions are made for critical clients, non-critical clients, critical servers, and non-critical servers. As the

predicted failure times are recorded, the user observes whether the condition for system failure, as defined previously, has been
met. If this is the case, a predicted system failure is recorded. Thus, in addition to monitoring the types of predicted failures (e.g.,
critical client), the process also involves monitoring Nnc(t) and Nns(t) to identify the time t when either is reduced to zero,
signifying that the supply of non-critical clients or non-critical servers has been exhausted. In this situation, a failure of a critical
client or critical server, respectively, will result in a system failure. Thus the user predicts a system failure when the following

Install Equation Editor and double-
click here to view equation.
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expression is true (where "∧" means "AND" and "∨" means "OR"):

((Predict critical client failure)∧(Nnc(t)=0))∨((Predict critical server failure)∧(Nns(t)=0)) (15).

If  the predictions produce multiple node failures in the same interval (e.g., critical client and critical server), the user records
multiple failures for that interval.

 APPLICATION OF THE MODEL

Analysis of the Defect and Failure Data

In this example the user applies the software reliability model to the Marine Corps LOGAIS system -- a client-server logistical
support system. In this system it is important that the reliability specification distinguish between failure states Degraded-Type
1, Degraded-Type 2, and System Failure, as previously defined (i.e., distinguish between node failures that cause performance
degradation but allow the system to survive, and node failures that cause a system failure). This distinction is made when analyzing
the system's defect data.  The defect data used in the example are from the LOGAIS defect database, using the Defect Control
System (DCS), a defect database management system which was used on the LOGAIS project  [MHB96, MTP96].

In this Windows-based client-server system, the types of clients and servers that were previously  defined are used, with
corresponding types of defects and failures, as identified in the defect database [MHB96, MTP96]. The following short-hand
notation for identifying the attributes of the defect database is used:

o S: Software Defect
o G: General Protection Fault (GPF)
o N: Network Related Failure
o C: System Crash

The LOGAIS defect database is queried in order to identify the software defects that qualify as node failures. The following
Boolean expressions, corresponding to the four types of node failures, are used:

1. Critical Client Failure: COUNT as failures WHERE (S∧G∧N∧notC). A GPF causes a node failure (Degraded-Type 2) on a
critical client, a client which must maintain  communication with other nodes on the network (Network Mode), and the failure does
not cause a System Crash (loss of server).

2. Non-Critical Client Failure: COUNT as failures WHERE (S∧G∧notN∧notC). A GPF causes a node failure (Degraded-Type
1) on a non-critical client, a client which does not have to maintain communication with other nodes on the network (Standalone
Mode), and the failure does not cause a System Crash (loss of server). 

3. Critical Server Failure: COUNT as failures WHERE (S∧notG∧N∧C). A System Crash causes a node  failure (Degraded-Type
2) on a critical server, a server which must maintain communication with other nodes on the network (Network Mode), and the
failure is not a GPF; it is more serious, resulting in the loss of a server.

 4. Non-Critical Server Failure: COUNT as failures WHERE (S∧notG∧notN∧C). A System Crash causes a node failure
(Degraded-Type 1) on a non-critical server, a server which does not have to maintain communication with other nodes on the
network, and the failure is not a GPF; it is more serious, resulting in the loss of a server.

The above classification associates GPF with clients and System Crash with servers; it also associates  Network Related
Failures with critical node failures.  Note that this is only an example. For other systems, different defect and failure classifications
may be appropriate.

The total failure count is obtained by taking the union of expressions 1-4 as follows:

5. Total Failure Count: COUNT as failures WHERE (S∧((G∧notC)∨(notG∧C))). This expression is used to verify the correctness
of  1-4 because it should equal their sum.

Observed Range and Prediction Range
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The major objective of reliability modeling is to predict future reliability over the prediction range of test or operational time
of a system. However to do so, there must be a historical record of defects and failures for computing the model parameters and
for making the best fit with the historical data; the data  is collected during the observed range of test or operational time of a
system. The length of the observed range is determined by the amount of data that has been collected prior to making a prediction,
while the length of the prediction range is determined by  duration of the system's mission. The observed range in this example
is 1,50 intervals and the prediction range is 51-61 intervals. These ranges are arbitrary and  selected only to illustrate the process.
We note that once a system has been tested or  operated over the prediction range, there will be observed defects and failures in
this range. The observed defects and failures in the prediction range are listed in Table 2.  The failure counts corresponding to
types 1-5, above, are summarized in Table 3, which shows the empirical probabilities of node failure that are computed using
equations (3)--(7) and (13). For example, for critical clients, the computation is 24/4048=.005929. The user should verify the
computations for the remaining types of nodes.

Application Predictions

Time to Failure

Using equation (14 ) and failure data in the observed range 1-50 (not shown) , we made predictions for Time to Failure, for t>50
days, for critical clients, non-critical clients, and non-critical servers, in Tables  4, 5 and 6, respectively. The predictions are made
for a given numbers of failures ( time to one failure for t>50 days, time to two failures for t>50 days, etc.). The predictions are
compared with the actual failure data, with the relative error and average relative error for cumulative values shown. In the case
of critical servers, there are only two actual failures, both of which occur in the observed range. Only one prediction of Time to
Failure for one more failure could be made at t=50 for critical servers because the predicted remaining failures at t=50 is 1.40
; therefore, critical server failures are not tabulated. In the case of non-critical nodes, the failure data is sufficiently dense to allow
a failure count interval of one day. In the case of critical clients, the failure data was sparse; thus a five day interval was used for
prediction, with these predictions converted to the one day intervals shown in Table 4. We note that predictions are difficult to
make with this type of data because the defects and failures are not recorded in CPU execution time. Rather they are recorded in
calendar time in batches, as shown in the Table 2, based on administrative convenience. Many of these batches are submitted at
the end of a workday.  This time  becomes the "submit  date".   

Using the data in Tables 4-6, we merge and sequence the various types of failure predictions in Table 7. The purpose of this
table is to construct the scenario of failures and surviving non-critical nodes so that the time of System Failure can be predicted.
The table shows that seven node failures (i.e., the sequence NS, NC, NC, CC, NC, NC, CC) are predicted to occur before the
system is predicted to fail. This occurs at t=61.07 days when there are no non-critical clients available and a critical client fails.
No critical server failures are shown in this table because the prediction of Time to Failure of 99.35 days cumulative is beyond
the prediction range of interest in this example.

Using the data in Tables 4-6, we merge and sequence the various types of actual failures  in Table 8. Similar to Table 7, the
purpose of this table is to construct the scenario of actual failures and surviving non-critical nodes so that the actual time of System
Failure can be determined and compared with the predicted values. As in the case of the predictions, this table shows that seven
node failures (i.e., the sequence NC, NS, NC,  NC, NC, NC, CC) occur before the system fails. This occurs at t=61days when there
are no non-critical clients available and a critical client fails. No critical server failures are shown in this table because they
occurred prior to the range of this example.

Probability of System Failure

Lastly, using equation (12), we predict the probability of system failure, given a node failure, in column 5 of Table 9, as the
system  progresses through the predicted failure scenario that was shown in Table 7. Except for row 2 in Table 9, the actual
probability is the same as the predicted probability because the actual failure scenario that was shown in Table 8 produces the
same numbers of  non-critical clients and servers that are shown in columns  6 and 7, respectively. Because the predicted and
actual failure scenarios are identical, except for row 2,  the predicted time to failure and type of node failure, columns 1 and 2,
respectively, can be compared in with the corresponding actual values in columns 3 and 4,  for given probabilities of system
failure. These values were reproduced from Tables 7 and 8, respectively.  Because for a given Psys/node fails, the  cumulative time
to failure occurs later for the predicted values, the model is a bit optimistic with respect to reality for this example. Note that the
in the last row of Table 9 the system has not yet failed. This occurs when a critical client fails at Day 61.07 predicted (see Table
 7) and at Day 61 actual (see Table 8). At this time there are no non-critical clients left to replace the failed critical client.
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The significant results that emerge from this analysis are that: 1) The Psys/node  fails is only significant (.029790) when the
supply of  both non-critical clients and non-critical servers has been exhausted and 2) Psys/node fails is significantly lower than
the probability of any type of node failure caused by a software defect: psw=.065705, obtained from equation (13) and computed
in Table 3. Thus evaluations of system reliability should recognize that software failures are not necessarily equivalent to system
failures and that assessments of software reliability that treat every failure as equivalent to a system failure will grossly understate
system reliability.

CONCLUSIONS AND FUTURE RESEARCH

Based on the above approach, it appears feasible to develop a system software reliability model for a  client-server system.
In order to implement the approach, it is necessary to partition the defects and failures into classes that are then associated with
critical and non-critical clients and servers. Once this is done, predictions are made of Time to Failure for each type; the
predictions are classified according to those that would result in a node failure caused by a software defect and those that would
result in a system failure caused by a series of software defects. Then the probability of system failure is computed. A significant
result of the research is that software failures should not be treated as the equivalent of system failures because to do so would
grossly understate system reliability.

In future research we will deal with the problem of how to apply the model to a system that has a large number of nodes. The
technique that we described for monitoring the times when predicted node and system failures occur would be cumbersome for
a large system. It appears that a program must be written to automate this process. Other possible future research activities include
the following: extend the model to include hardware failures; develop measures of performance degradation, as nodes fail; include
a node repair rate to reflect the possibility of recovering failed nodes during the operation of the system; apply smoothing
techniques, such as the moving average,  to mitigate anomalies in calendar time defect data.
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Table 1

Failure States
Degraded - Type 1 Degraded - Type 2 System Failure

Non-Critical Client Node Failure Does Not Apply Does Not Apply

Critical Client Does Not Apply Node Failure(s) and
Nnc(t)>0

Node Failure(s) and Nnc(t)=0

Non-Critical Server Node Failure Does Not Apply Does Not Apply

Critical Server Does Not Apply Node Failure(s) and Nns(t)>0 Node Failure(s) and
Nns(t)=0

Table 2
 Chronological Node Failure Count Database  (Sample)

CC: Critical Client Node Failure
NC: Non-Critical Client Node Failure
CS: Critical Server Node Failure
NS: Non-Critical Server Node Failure

Interval Defect  ID Number Submit Date CC NC CS NS

51 2633,2634 2 1/24/95 X

51 2635,2636,2637,2638 4 1/24/95 X

52

53 2661,2662,2663,2664 4 1/26/95 X

54 2641,2644,2645,2669,
2671,2672,2673,3003

8 1/27/95 X

54 2640,2643,2670,2674,
2675,2676,2783

7 1/27/95 X

55 2450 1 1/30/95 X

56

57

58 2487 1 2/2/95 X

59 2511,2512,2513 3 2/3/95 X

60

61 3025,3026,3027,3029 4 2/7/95 X

Table 3
Summary of Node  Failures (4048 Software Defects)

Number of Failures Probability

1. Critical Client 24 pcc=.005929

2.Non-Critical Client 83 pnc=.020250

3.Critical Server   2 pcs=.000494

4. Non-Critical Server 158 pns=.039032
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Table 4
Critical Client Predictions Made at Time=50 Days

    Observed Range=1,50 Days; Failure Count=11; Prediction Range>50 Days

Predicted Actual

Given Number of
Failures

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Relative Error
(Percent)

1 5.19 55.19 11 61 -9.52

2 11.07 61.07 11 61 +.11

3 17.88 67.88 11 61 +11.28

4 25.95 75.95 11 61 +24.51

5 35.86 85.86 36 86 -.16

Average=9.12%   

Table 5
Non-Critical Client Predictions Made at Time=50 Days

    Observed Range=1,50 Days; Failure Count=36; Prediction Range>50 Days

Predicted Actual

Given Number of
Failures

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Relative Error
(Percent)

1 2.41 52.41 1 51 +2.76

2 4.87 54.87 1 51 +7.59

3 7.37 57.37 3 53 +8.25

4 9.92 59.92 3 53 +13.06

5 12.52 62.52 3 53 +17.96

                                 Average=9.92%   

Table 6
Non-Critical Server Predictions Made at Time=50 Days

    Observed Range=1,50 Days; Failure Count=108; Prediction Range>50 Days

Predicted Actual

Given Number of
Failures

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Time to Failure
(Days)

Cumulative Time
to Failure (Days)

Relative Error
(Percent)

1 1.96 51.96 1 51 +1.88

2 3.93 53.93 1 51 +5.75

3 5.90 55.90 1 51 +9.61

4 7.87 57.87 1 51 +13.47

5 9.84 59.84 4 54 +10.81

      Average=8.30%
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Table 7
Predicted  Time to Failure When  Failures are Merged and Sequenced. Observed Range=1,50 Days; Prediction Range=51,61 Days

       CC: Critical Client NC: Non-Critical Client       NS: Non-Critical Server

Cumulative Time to
Failure (Days)

Time to Failure
(Days)

Type of Failure Number of Non-Critical
Clients

Available

Number of Non-Critical
Servers

Available

50 1.96 5 1

51.96 .45 NS 5 0

52.41 2.46 NC 4 0

54.87 .32 NC 3 0

55.19 2.18 CC 2 0

57.37 2.55 NC 1 0

59.92 1.15 NC 0 0

61.07 CC System Failure

Table 8
Actual  Time to Failure When  Failures are Merged and Sequenced. Range=51,61 Days

           CC: Critical Client NC: Non-Critical Client       NS: Non-Critical Server

Cumulative Time
to Failure (Days)

Time to Failure
(Days)

Type of Failure Number of Non-Critical
Clients

Available

Number of Non-Critical
Servers

Available

50 1 5 1

51 0 NC,NS 4 0

51 2 NC 3 0

53 0 NC 2 0

53 0 NC 1 0

53 8 NC 0 0

61 CC System Failure
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Table 9
Probability of System Failure

Predicted Cumulative
Time

to Failure (Days)

Predicted
Type of
Node

Failure

Actual Cumulative
Time to Failure

(Days)

Actual
Type of
Node

Failure

Probability of
System Failure
Given a Node

Failure

Number of Non-
Critical Clients

Available

Number of Non-
Critical Servers

Available

50 50 0.000019 5 1

51.96 NS  0.000494*  5*  0*

52.41 NC 51 NC,NS 0.000494 4 0

54.87 NC 51 NC 0.000494 3 0

55.19 CC 53 NC 0.000506 2 0

57.37 NC 53 NC 0.001087 1 0

59.92 NC 53 NC 0.029790 0 0

* Applies only to predicted values.


